Fractional Solutions of the Associated Legendre Equation
نویسندگان
چکیده
منابع مشابه
Analytical solutions for the fractional Fisher's equation
In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...
متن کاملAnalytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملanalytical solutions for the fractional fisher's equation
in this paper, we consider the inhomogeneous time-fractional nonlinear fisher equation with three known boundary conditions. we first apply a modified homotopy perturbation method for translating the proposed problem to a set of linear problems. then we use the separation variables method to solve obtained problems. in examples, we illustrate that by right choice of source term in the modified...
متن کاملNumerical Solution of Space-time Fractional two-dimensional Telegraph Equation by Shifted Legendre Operational Matrices
Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They a...
متن کاملLegendre wavelets method for numerical solution of time-fractional heat equation
In this paper, we develop an efficient Legend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
سال: 2016
ISSN: 2147-3188
DOI: 10.17798/beufen.63369